
Introduction to
Assembly Languagey g g

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Mineralsg y

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]



Outline
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 2



Constants
Integer Constants

Examples: –10, 42d, 10001101b, 0FF3Ah, 777o

Radix: b = binary, d = decimal, h = hexadecimal, and o = octal

If no radix is given, the integer constant is decimal

A hexadecimal beginning with a letter must have a leading 0A hexadecimal beginning with a letter must have a leading 0

Character and String Constants
Enclose character or string in single or double quotes

Examples: 'A', "d", 'ABC', "ABC", '4096'

Embedded quotes: "single quote ' inside", 'double quote " inside'

Each ASCII character occupies a single byte

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 3

p g y



Assembly Language Statementsm y g g m
Three types of statements in assembly language

T i ll t t t h ld liTypically, one statement should appear on a line
1. Executable Instructions

Generate machine code for the processor to execute at runtimeGenerate machine code for the processor to execute at runtime
Instructions tell the processor what to do

2. Assembler Directives
Provide information to the assembler while translating a program
Used to define data, select memory model, etc.
Non-executable: directives are not part of instruction set

3. Macros
Shorthand notation for a group of statementsShorthand notation for a group of statements
Sequence of instructions, directives, or other macros 

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 4



Instructions
Assembly language instructions have the format:
[label:]   mnemonic   [operands]    [;comment]

Instruction Label (optional)
Marks the address of an instruction, must have a colon :
Used to transfer program execution to a labeled instruction 

Mnemonic
Identifies the operation (e.g. MOV, ADD, SUB, JMP, CALL)

Operands
Specify the data required by the operationSpecify the data required by the operation

Executable instructions can have zero to three operands

Operands can be registers, memory variables, or constants

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 5

Operands can be registers, memory variables, or constants



Instruction Examples
No operands

mp

stc ; set carry flag

One operand
inc  eax ; increment register eax

call Clrscr ; call procedure Clrscr

jmp  L1 ; jump to instruction with label L1

Two operands
add  ebx, ecx ; register ebx = ebx + ecx

sub  var1, 25 ; memory variable var1 = var1 - 25

Three operands
imul eax,ebx,5 ; register eax = ebx * 5

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 6

imul eax,ebx,5 ; register eax  ebx  5



Identifiersf
Identifier is a programmer chosen name

Identifies variable, constant, procedure, code label

May contain between 1 and 247 charactersy

Not case sensitive

First character must be a letter (A Z a z)First character must be a letter (A..Z, a..z), 
underscore(_), @, ?, or $.

Subsequent characters may also be digitsSubsequent characters may also be digits.

Cannot be same as assembler reserved word.

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 7



Commentsmm
Comments are very important!

Explain the program's purpose

When it was written, revised, and by whom

Explain data used in the program

Explain instruction sequences and algorithms used

Application-specific explanations

Single-line comments
Begin with a semicolon ; and terminate at end of line

Multi-line commentsMulti line comments
Begin with COMMENT directive and a chosen character

End with the same chosen character
Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 8

End with the same chosen character



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 9



Flat Memory Program Templatem y g m mp
TITLE Flat Memory Program Template   (Template.asm)

; Program Description:
; Author: Creation Date: 
; Modified by: Modification Date:

.686

.MODEL FLAT, STDCALL

.STACK

INCLUDE Irvine32.inc
.DATA

; (insert variables here); (insert variables here)
.CODE
main PROC

; (insert executable instructions here)
exit

main ENDP
; (insert additional procedures here)

END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 10

END main



TITLE and .MODEL Directives
TITLE line (optional)

Contains a brief heading of the program and the disk file name

.MODEL directive
Specifies the memory configuration
For our purposes, the FLAT memory model will be used

Linear 32-bit address space (no segmentation)

STDCALL directive tells the assembler to use …
Standard conventions for names and procedure callsStandard conventions for names and procedure calls

.686 processor directive
U d b f th MODEL di tiUsed before the .MODEL directive
Program can use instructions of Pentium P6 architecture
At least the 386 directive should be used with the FLAT model

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 11

At least the .386 directive should be used with the FLAT model



.STACK, .DATA, & .CODE Directives, ,
.STACK directive

Tells the assembler to define a runtime stack for the program

The size of the stack can be optionally specified by this directive

The runtime stack is required for procedure calls

.DATA directive
Defines an area in memory for the program data

The program's variables should be defined under this directive

Assembler will allocate and initialize the storage of variables

.CODE directive
Defines the code section of a program containing instructions

Assembler will place the instructions in the code area in memory

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 12



INCLUDE, PROC, ENDP, and END, , ,
INCLUDE directive

C th bl t i l d d f th filCauses the assembler to include code from another file
We will include Irvine32.inc provided by the author Kip Irvine

Declares procedures implemented in the Irvine32 lib libraryDeclares procedures implemented in the Irvine32.lib library
To use this library, you should link Irvine32.lib to your programs

PROC and ENDP directivesPROC and ENDP directives
Used to define procedures
As a convention we will define main as the first procedureAs a convention, we will define main as the first procedure
Additional procedures can be defined after main

END directiveEND directive
Marks the end of a program
Identifies the name (main) of the program’s startup procedure

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 13

Identifies the name (main) of the program s startup procedure



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 14



Adding and Subtracting Integers
TITLE Add and Subtract           (AddSub.asm)
; This program adds and subtracts 32 bit integers

g g g

; This program adds and subtracts 32-bit integers.
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc

.CODE
main PROC

mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registersp g ; p y g
exit

main ENDP
END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 15

END main



Example of Console Outputmp f p

Procedure DumpRegs is defined in Irvine32 lib libraryProcedure DumpRegs is defined in Irvine32.lib library 

It produces the following console output,

showing registers and flags:

EAX=00030000  EBX=7FFDF000  ECX=00000101  EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4ESI 00000000  EDI 00000000  EBP 0012FFF0  ESP 0012FFC4

EIP=00401024  EFL=00000206  CF=0  SF=0  ZF=0  OF=0

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 16



Suggested Coding Standardsgg g
Some approaches to capitalization

CCapitalize nothing
Capitalize everything
C it li ll d d i d i tCapitalize all reserved words, mnemonics and register names
Capitalize only directives and operators
MASM i NOT iti d t tt h t i dMASM is NOT case sensitive: does not matter what case is used

Other suggestions
Use meaningful identifier names
Use blank lines between procedures
Use indentation and spacing to align instructions and comments

Use tabs to indent instructions, but do not indent labels
Align the comments that appear after the instructions

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 17

Align the comments that appear after the instructions



Understanding Program Terminationg g m m
The exit at the end of main procedure is a macro

D fi d i I i 32 iDefined in Irvine32.inc
Expanded into a call to ExitProcess that terminates the program
E itP f ti i d fi d i th k l32 libExitProcess function is defined in the kernel32 library
We can replace exit with the following:
push 0 ; push parameter 0 on stackpush 0 ; push parameter 0 on stack

call ExitProcess ; to terminate program

You can also replace exit with: INVOKE ExitProcess 0You can also replace exit with: INVOKE ExitProcess, 0

PROTO directive (Prototypes)
Declares a procedure used by a program and defined elsewhereDeclares a procedure used by a program and defined elsewhere
ExitProcess PROTO, dwExitCode:DWORD

Specifies the parameters and types of a given procedure
Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 18

Specifies the parameters and types of a given procedure



Modified Programf g m
TITLE Add and Subtract              (AddSubAlt.asm)
; This program adds and subtracts 32-bit integers

.686

.MODEL flat,stdcall
STACK 4096.STACK 4096

; No need to include Irvine32.inc
ExitProcess PROTO, dwExitCode:DWORD

.code
main PROC

mov eax 10000h ; EAX = 10000hmov  eax,10000h ; EAX = 10000h
add  eax,40000h ; EAX = 50000h
sub  eax,20000h ; EAX = 30000h

push 0
call ExitProcess ; to terminate program

main ENDP
END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 19

END main



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 20



Assemble-Link-Debug Cyclem g y
Editor

W it ( )Write new (.asm) programs
Make changes to existing ones

A bl ML

Edit

prog.asmAssembler: ML.exe program
Translate (.asm) file into object 
(.obj) file in machine language

Assemble

p g

(.obj) file in machine language
Can produce a listing (.lst) file 
that shows the work of assembler

prog.obj prog.lstlibrary.lib

Linker: LINK32.exe program
Combine object (.obj) files with 
li k lib ( lib) fil

Link

prog exe prog maplink library (.lib) files
Produce executable (.exe) file
Can produce optional ( map) file

Run

prog.exe prog.map

Debug

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 21

Can produce optional (.map) file 



Assemble-Link-Debug Cycle – cont'dm g y
MAKE32.bat

B t h d fil
Edit

Batch command file
Assemble and link in one step

D b WINDBG
prog.asm

Debugger: WINDBG.exe
Trace program execution

Eith t b t

Assemble

Either step-by-step, or
Use breakpoints

View Link

prog.obj prog.lstlibrary.lib

View
Source (.asm) code
Registers

Link

prog.exe prog.map

Memory by name & by address
Modify register & memory content

Di d b k h di fi h b

RunDebug

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 22

Discover errors and go back to the editor to fix the program bugs



Listing Fileg
Use it to see how your program is assembled

Contains 
Source code

Object & source code in a listing file
00000000 d

Object code

Relative addresses

00000000 .code
00000000 main PROC
00000000  B8 00060000 mov eax, 60000h
00000005  05 00080000 add eax, 80000hRelative addresses

Segment names
0000000A  2D 00020000 sub eax, 20000h

0000000F  6A 00 push 0
00000011 E8 00000000 E call ExitProcess

Symbols

Variables

00000011  E8 00000000 E call ExitProcess
00000016 main ENDP

END main

Procedures

Constants object code
(hexadecimal)

source codeRelative
Addresses

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 23

(hexadecimal)Addresses



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 24



Intrinsic Data Types
BYTE, SBYTE REAL4

yp

8-bit unsigned integer
8-bit signed integer

O S O

IEEE single-precision float
Occupies 4 bytes

WORD, SWORD
16-bit unsigned integer
16 bit i d i t

REAL8
IEEE double-precision
O i 8 b t16-bit signed integer

DWORD, SDWORD
32

Occupies 8 bytes

REAL10
IEEE d d i i32-bit unsigned integer

32-bit signed integer

QWORD TBYTE

IEEE extended-precision
Occupies 10 bytes

QWORD, TBYTE
64-bit integer
80 bit integer

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 25

80-bit integer



Data Definition Statementf m
Sets aside storage in memory for a variable

May optionally assign a name (label) to the data

Syntax:y

[name] directive initializer [, initializer] . . .

val1 BYTE 10val1  BYTE 10

All initializers become binary data in memory

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 26



Defining BYTE and SBYTE Dataf g
Each of the following defines a single byte of storage:

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed bytevalue5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

• MASM does not prevent you from initializing a BYTE with a 
negative value, but it's considered poor style.g , p y

• If you declare a SBYTE variable, the Microsoft debugger will 
automatically display its value in decimal with a leading sign.

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 27



Defining Byte Arraysf g y y

Examples that use multiple initializers

list1 BYTE 10 20 30 40

Examples that use multiple initializers

list1 BYTE 10,20,30,40

list2 BYTE 10,20,30,40

BYTE 50 60 70 80BYTE 50,60,70,80

BYTE 81,82,83,84

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,'A',22h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 28



Defining Stringsf g g
A string is implemented as an array of characters

For convenience, it is usually enclosed in quotation marks

It is often terminated with a NULL char (byte value = 0)

Examples:

str1 BYTE "Enter your name" 0str1 BYTE Enter your name , 0

str2 BYTE 'Error: halting program', 0

str3 BYTE 'A' 'E' 'I' 'O' 'U'str3 BYTE A , E , I , O , U

greeting  BYTE "Welcome to the Encryption "

BYTE "Demo Program" 0BYTE Demo Program , 0

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 29



Defining Strings – cont'df g g
To continue a single string across multiple lines, end 
each line with a commaeach line with a comma

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
"1. Create a new account",0dh,0ah,
"2. Open an existing account",0dh,0ah,
"3. Credit the account",0dh,0ah,, , ,
"4. Debit the account",0dh,0ah,
"5. Exit",0ah,0ah,
"Choice> " 0"Choice> ",0

End-of-line character sequence: Idea: Define all strings q
0Dh = 13 = carriage return

0Ah = 10 = line feed

used by your program 
in the same area of the 

data segment

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 30

g



Using the DUP Operatorg p
Use DUP to allocate space for an array or string

Advantage: more compact than using a list of initializers

Syntax
counter DUP ( argument )

Counter and argument must be constants expressions

The DUP operator may also be nested

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero

var2 BYTE 20 DUP(?) ; 20 bytes, all uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"var3 BYTE 4 DUP( STACK )      ; 20 bytes: STACKSTACKSTACKSTACK

var4 BYTE 10,3 DUP(0),20 ; 5 bytes: 10, 0, 0, 0, 20

var5 BYTE 2 DUP(5 DUP('*'), 5 DUP('!')) ; '*****!!!!!*****!!!!!'

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 31



Defining 16-bit and 32-bit Dataf g
Define storage for 16-bit and 32-bit integers

Signed and Unsigned

Single or multiple initial values

word1  WORD   65535 ; largest unsigned 16-bit value
word2  SWORD  –32768 ; smallest signed 16-bit value
word3  WORD   "AB" ; two characters fit in a WORD
array1 WORD   1,2,3,4,5 ; array of 5 unsigned words
array2 SWORD 5 DUP(?) ; array of 5 signed wordsarray2 SWORD  5 DUP(?) ; array of 5 signed words
dword1 DWORD  0ffffffffh   ; largest unsigned 32-bit value
dword2 SDWORD –2147483648  ; smallest signed 32-bit value
array3 DWORD  20 DUP(?) ; 20 unsigned double words
array4 SDWORD –3,–2,–1,0,1 ; 5 signed double words

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 32



QWORD, TBYTE, and REAL DataQ , ,
QWORD and TBYTE

Define storage for 64-bit and 80-bit integers

Signed and Unsigned

REAL4, REAL8, and REAL10
Defining storage for 32-bit, 64-bit, and 80-bit floating-point data

quad1 QWORD  1234567812345678h
val1 TBYTE 1000000000123456789Ahval1  TBYTE  1000000000123456789Ah
rVal1 REAL4  -2.1
rVal2 REAL8  3.2E-260
rVal3 REAL10 4.6E+4096
array REAL4  20 DUP(0.0)

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 33



Symbol Table
Assembler builds a symbol table

ym

So we can refer to the allocated storage space by name

Assembler keeps track of each name and its offset

Offset of a variable is relative to the address of the first variable

Example Symbol Tabley

.DATA Name Offset
value WORD 0 value 0value  WORD   0 value 0

sum    DWORD  0 sum 2

marks WORD 10 DUP (?) marks 6marks  WORD  10 DUP (?) marks 6

msg    BYTE  'The grade is:',0 msg        26

char1 BYTE ? char1 40

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 34

char1  BYTE  ? char1      40



Byte Ordering and Endianness
Processors can order bytes within a word in two ways

y g

Little Endian Byte Ordering
Memory address = Address of least significant  byte
Examples: Intel 80x86

Byte 3Byte 0Byte 1Byte 2Byte 3
MSB LSB

. . . . . .Byte 0 Byte 1 Byte 2
a a+3a+2a+1address

Big Endian Byte Ordering

Byte 3Byte 0Byte 1Byte 2Byte 3
32-bit Register

Byte 0 Byte 1 Byte 2

Memory

Memory address = Address of most significant byte
Examples: MIPS, Motorola 68k, SPARC

Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
. . . . . .Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 35

3 b t eg ste Memory



Adding Variables to AddSubg
TITLE Add and Subtract, Version 2            (AddSub2.asm)
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
DATA.DATA
val1   DWORD 10000h
val2   DWORD 40000h
val3   DWORD 20000h
result DWORD ?
.CODE
main PROC

mov eax val1 ; start with 10000hmov  eax,val1 ; start with 10000h
add  eax,val2 ; add 40000h
sub  eax,val3 ; subtract 20000h
mov  result,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP
END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 36

END main



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 37



Defining Symbolic Constantsf g ym
Symbolic Constant

Just a name used in the assembly language program

Processed by the assembler ⇒ pure text substitution

Assembler does NOT allocate memory for symbolic constants

Assembler provides three directives:
= directive

EQU directive

TEXTEQU directive

Defining constants has two advantages:
Improves program readability

Helps in software maintenance: changes are done in one place

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 38



Equal-Sign Directiveq g
Name = Expression

Name is called a symbolic constant

Expression is an integer constant expression

Good programming style to use symbols

COUNT = 500 ; NOT a variable (NO memory allocation)( y )
. . .
mov eax, COUNT ; mov eax, 500
. . .
COUNT = 600 ; Processed by the assembler
. . .

Name can be redefined in the program

mov ebx, COUNT ; mov ebx, 600

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 39

Name can be redefined in the program



EQU Directive
Three Formats:

Q

Name EQU Expression Integer constant expression

Name EQU Symbol Existing symbol name

Name EQU <text> Any text may appear within < …>

SIZE     EQU 10*10 ; Integer constant expression

PI       EQU <3.1416> ; Real symbolic constant 

PressKey EQU <"Press any key to continue...",0>

.DATA

No Redefinition: Name cannot be redefined with EQU

prompt BYTE PressKey

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 40

No Redefinition: Name cannot be redefined with EQU



TEXTEQU DirectiveQ
TEXTEQU creates a text macro. Three Formats:

Name TEXTEQU <text> assign any text to name

Name TEXTEQU textmacro assign existing text macro

Name TEXTEQU %constExpr constant integer expression

Name can be redefined at any time (unlike EQU)Name can be redefined at any time (unlike EQU)

ROWSIZE = 5
COUNT TEXTEQU %(ROWSIZE * 2) ; evaluates to 10COUNT   TEXTEQU  %(ROWSIZE * 2) ; evaluates to 10
MOVAL   TEXTEQU  <mov al,COUNT>
ContMsg TEXTEQU  <"Do you wish to continue (Y/N)?">
DATA.DATA
prompt  BYTE     ContMsg
.CODE
MOVAL t l 10

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 41

MOVAL ; generates: mov al,10



Next . . .
Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integersg g g

Assembling, Linking, and Debugging Programs

Defining DataDefining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 42



OFFSET Operatorp
OFFSET = address of a variable within its segment

In FLAT memory, one address space is used for code and data

OFFSET = linear address of a variable (32-bit number)

.DATA
bVal  BYTE  ? ; Assume bVal is at 00404000h
wVal  WORD  ?
dVal  DWORD ?
dVal2 DWORD ?

.CODE
mov esi, OFFSET bVal ; ESI = 00404000h
mov esi, OFFSET wVal ; ESI = 00404001h
mov esi, OFFSET dVal ; ESI = 00404003h
mov esi, OFFSET dVal2 ; ESI = 00404007h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 43



ALIGN Directive
ALIGN directive aligns a variable in memory

Syntax: ALIGN bound
Where bound can be 1, 2, 4, or 16

Address of a variable should be a multiple of bound
Assembler inserts empty bytes to enforce alignmentAssembler inserts empty bytes to enforce alignment

.DATA ; Assume that
b1 BYTE ? ; Address of b1 = 00404000hb1 BYTE  ? ; Address of b1  00404000h
ALIGN 2 ; Skip one byte
w1 WORD  ? ; Address of w1 = 00404002h
w2 WORD  ? ; Address of w2 = 00404004h d240400C;
ALIGN 4 ; Skip two bytes
d1 DWORD ? ; Address of d1 = 00404008h
d2 DWORD ? ; Address of d2 = 0040400Ch

w1b1404000
w2404004

d1404008

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 44



TYPE Operatorp
TYPE operator

Size, in bytes, of a single element of a data declaration

.DATA
var1 BYTE ?
var2 WORD ?var2 WORD ?
var3 DWORD ?
var4 QWORD ?

.CODE
mov eax, TYPE var1 ; eax = 1
mov eax, TYPE var2 ; eax = 2
mov eax, TYPE var3 ; eax = 4
mov eax, TYPE var4 ; eax = 8

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 45



LENGTHOF Operator
LENGTHOF operator

p

Counts the number of elements in a single data declaration

.DATA
array1    WORD    30 DUP(?),0,0
array2    WORD    5 DUP(3 DUP(?))y ( ( ))
array3    DWORD   1,2,3,4
digitStr  BYTE   "12345678",0

.code
mov ecx, LENGTHOF array1 ; ecx = 32
mov ecx LENGTHOF array2 ; ecx = 15mov ecx, LENGTHOF array2 ; ecx = 15
mov ecx, LENGTHOF array3 ; ecx = 4
mov ecx, LENGTHOF digitStr ; ecx = 9

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 46



SIZEOF Operatorp
SIZEOF operator

Counts the number of bytes in a data declaration

Equivalent to multiplying LENGTHOF by TYPE

.DATA
array1     WORD    30 DUP(?),0,0
array2     WORD    5 DUP(3 DUP(?))
array3     DWORD   1,2,3,4
digitStr   BYTE   "12345678",0

.CODE
mov ecx, SIZEOF array1 ; ecx = 64

SIZEOF 2 30mov ecx, SIZEOF array2 ; ecx = 30
mov ecx, SIZEOF array3 ; ecx = 16
mov ecx, SIZEOF digitStr ; ecx = 9

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 47



Multiple Line Declarationsp
A data declaration spans multiple 
lines if each line (except the last)

In the following example, array 
identifies the first line WORDlines if each line (except the last) 

ends with a comma

The LENGTHOF and SIZEOF

identifies the first line WORD 
declaration only

Compare the values returned byThe LENGTHOF and SIZEOF 
operators include all lines 

belonging to the declaration

Compare the values returned by 
LENGTHOF and SIZEOF here to 

those on the left

.DATA
array WORD 10,20,

.DATA
array WORD 10,20

30,40,
50,60

WORD 30,40
WORD 50,60

.CODE
mov eax, LENGTHOF array ; 6
mov ebx, SIZEOF array   ; 12

.CODE
mov eax, LENGTHOF array ; 2
mov ebx, SIZEOF array   ; 4

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 48

, y ; , y ;



PTR Operator
PTR Provides the flexibility to access part of a variable

p

Can also be used to combine elements of a smaller type

Syntax: Type PTR (Overrides default type of a variable)

.DATA
dval  DWORD 12345678h dval array

array BYTE  00h,10h,20h,30h

.CODE

78 56 34 12 00 10 20 30

mov al,  dval
mov al,  BYTE PTR dval
mov ax,  dval

; error – why?
; al = 78h
; error – why?,

mov ax,  WORD PTR dval
mov eax, array
mov eax DWORD PTR array

; error why?
; ax = 5678h
; error – why?
; eax = 30201000h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 49

mov eax, DWORD PTR array ; eax = 30201000h



LABEL Directive
Assigns an alternate name and type to a memory location

LABEL does not allocate any storage of its own

Removes the need for the PTR operatorRemoves the need for the PTR operator

Format: Name LABEL Type

.DATA
dval   LABEL DWORD

00 10 00 20

blist

wval   LABEL WORD
blist  BYTE 00h,10h,00h,20h
.CODE

wval

00 10 00 20

dval
mov eax, dval
mov cx,  wval
mov dl,  blist

dval
; eax = 20001000h
; cx  = 1000h
; dl  = 00h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 50

, ;



Summarymm y
Instruction ⇒ executed at runtime
Directive ⇒ interpreted by the assembler
.STACK, .DATA, and .CODE

Define the code, data, and stack sections of a program

Edit-Assemble-Link-Debug Cycle
Data Definition

BYTE, WORD, DWORD, QWORD, etc.
DUP operator

Symbolic Constant
EQU d TEXTEQU di ti=, EQU, and TEXTEQU directives

Data-Related Operators
OFFSET ALIGN TYPE LENGTHOF SIZEOF PTR d LABEL

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM            slide 51

OFFSET, ALIGN, TYPE, LENGTHOF, SIZEOF, PTR, and LABEL


